全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考總復習 > 高考知識點 > 高考語文知識點 > 歷史上的數(shù)學學派——形式主義學派

歷史上的數(shù)學學派——形式主義學派

來源:網(wǎng)絡資源 2009-08-25 19:17:25

[標簽:歷史 數(shù)學]

  形式主義學派又稱形式公理派。一般認為其創(chuàng)始人物為希爾伯特,但嚴格地說,希氏本人的數(shù)學觀與形式主義學派的主張并不完全相同,只不過不少形式主義者奉希爾伯特為祖師罷了。希爾伯特規(guī)劃是其數(shù)學觀的主要體現(xiàn),核心是:以形式公理化為基礎,以有限立場的推理為工具,去證明整個數(shù)學的相容性,從而把整個數(shù)學建立在一個牢固可靠的基礎上。

  希爾伯特規(guī)劃的基本內容有:

  (1)證明古典數(shù)學的每個分支都可公理化;

  (2)證明這樣的系統(tǒng)是完備的;

  (3)證明這樣的系統(tǒng)是不矛盾的;

  (4)證明這樣的系統(tǒng)所相應的模型是同構的;

  (5)尋找一種方法,借助于它,可以在有限步驟內判斷任一命題的可證明性。

  然而,哥德爾的“不完全性定理”的證明,宣告希氏規(guī)劃是可能實現(xiàn)的,原因在于他過分夸大了形式研究的作用和形式系統(tǒng)嚴格證明對于數(shù)學真理性的確定性。但是,形式主義學派對數(shù)學的發(fā)展是有目共睹的,希爾伯特奠定的形式化研究方法顯示出廣泛的應用價值和重大的方法論意義,由于形式主義學派致力于形式化的研究,導致了元數(shù)學的產生,把數(shù)學證明作為對象研究產生了“證明論”,元數(shù)學和證明論是兩項重大的數(shù)學成果,它使數(shù)學研究達到一個嶄新的高度。

 

收藏

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數(shù)線

專業(yè)分數(shù)線

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權所有 Copyright © 2005-2022 m.0u5j96q.cn . All Rights Reserved