高一數(shù)學關于對數(shù)的公式
來源:網(wǎng)絡資源 2009-10-10 14:32:38
對數(shù)的性質及推導
用^表示乘方,用log(a)(b)表示以a為底,b的對數(shù)
*表示乘號,/表示除號
定義式:
若a^n=b(a>0且a≠1)
則n=log(a)(b)
基本性質:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)
推導
1.這個就不用推了吧,直接由定義式可得(把定義式中的[n=log(a)(b)]帶入a^n=b)
2.
MN=M*N
由基本性質1(換掉M和N)
a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]
由指數(shù)的性質
a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}
又因為指數(shù)函數(shù)是單調函數(shù),所以
log(a)(MN)=log(a)(M)+log(a)(N)
3.與2類似處理
MN=M/N
由基本性質1(換掉M和N)
a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]
由指數(shù)的性質
a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}
又因為指數(shù)函數(shù)是單調函數(shù),所以
log(a)(M/N)=log(a)(M)-log(a)(N)
4.與2類似處理
M^n=M^n
由基本性質1(換掉M)
a^[log(a)(M^n)]={a^[log(a)(M)]}^n
由指數(shù)的性質
a^[log(a)(M^n)]=a^{[log(a)(M)]*n}
又因為指數(shù)函數(shù)是單調函數(shù),所以
log(a)(M^n)=nlog(a)(M)
其他性質:
性質一:換底公式
log(a)(N)=log(b)(N)/log(b)(a)
推導如下
N=a^[log(a)(N)]
a=b^[log(b)(a)]
綜合兩式可得
N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
又因為N=b^[log(b)(N)]
所以
b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N)=[log(a)(N)]*[log(b)(a)]{這步不明白或有疑問看上面的}
所以log(a)(N)=log(b)(N)/log(b)(a)
性質二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]
推導如下
由換底公式[lnx是log(e)(x),e稱作自然對數(shù)的底]
log(a^n)(b^m)=ln(a^n)/ln(b^n)
由基本性質4可得
log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}
再由換底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性質及推導完)
公式三:
log(a)(b)=1/log(b)(a)
證明如下:
由換底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b為底的對數(shù),log(b)(b)=1
=1/log(b)(a)
還可變形得:
log(a)(b)*log(b)(a)=1
相關推薦
高考院校庫(挑大學·選專業(yè),一步到位。
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢